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1 Marginals, Laws of Large Numbers, and The Asymptotic
Equipartition Property

1.1 Marginal distributions and coupling

Denote M(X,B) as the space of finite signed measures on (X,B) and P (X,B) as the
subcollection of probability measures. We may also drop B in the notation, assuming it to
be the Borel σ-algebra.

Definition 1.1. If λ = ϕ∗P ∈ P (
∏
iXi,

⊗
i Bi) is a joint distribution, then the dsitrubtions

µi = πi∗λ are called the marginals of µi. λ is called a coupling of (µi)i.

Proposition 1.1. (ϕi)i are independent if and only if ϕ∗P =
⊗

i∈I ϕi∗P.

Remark 1.1. Product measures can be defined as usual, provided µi(Xi) = 1 for all i.

Proposition 1.2. If f1, . . . , fm are independent, R-valued random variablea with fi ∈
L1(P) for all i, then E[f1, . . . , fm] =

∏m
i=1 E[fi].

Proof. Let µi be the distribution of fi. By independence, the joint distribution of the fi is
µ1 ⊗ · · · ⊗ µm. Using this joint distribution, the left hand side is∫

Rm

x1 · · ·xm d(µ1 ⊗ · · · ⊗ µm),

and the right hand side is ∫
R
x1 dµ1 · · ·

∫
R
xm dµm.

Tonelli’s theorem tells you that the left hand side with absolute values is integrable, so
then Fubini’s theorem tells you that the right hand side equals the left.
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1.2 Laws of large numbers

Theorem 1.1. If f1, f2, . . . are R-valued, iid random variables with all fi ∈ L1(P), then

1

n

n∑
i=1

fi → E[fi].

in ‖ · ‖1 and a.e.

We will not prove this yet. But instead, for now, let’s prove the special case of conver-
gence in ‖ · ‖2 when each fi ∈ L2(P).

Proof. First, write

1

n

n∑
i=1

fi − E[f1] =
1

n

n∑
i=1

(fi − E[fi]).

So we can assume that E[fi] = 0. Now∥∥∥∥∥ 1

n

n∑
i=1

fi

∥∥∥∥∥
2

2

=
1

n2

n∑
i=1

‖fi‖22 +
1

n2

∑
i 6=j

E[fifj ]

But if i 6= j, then E[fifj ] = E[fi]E[fj ] = 0.

=
1

n2

n∑
i=1

‖fi‖22

= O(1/n).

Remark 1.2. You can prove the full theorem from this special case by using the fact that
L2 is dense in L1 (since simple functions are dense in all Lp).

Let |X | <∞ be a finite alphabet. Let n ∈ N, x ∈ X n, and a ∈ X .

Definition 1.2. Let N(a | x) = |{i = 1, . . . , n : xi = a}|. For a fixed x,

Px(a) :=
N(a | x)

n
∈ P (X )

is called the empirical distribution of x.

Corollary 1.1. Let α1, α2, . . . be iid random variables taking values in X with common
distribution P. Then P(α1,...,αn) → P in probability and a.s.
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Proof. For all a ∈ X ,

P(α1,...,αn)(a) =
1

n

n∑
i=1

1{a}(αi)
LLN−−−→ E[1{a}(α1)] = P(a).

Definition 1.3. Let p ∈ P (X ). The ε-typical set for p is

T (n)
ε (p) = {x ∈ X n : ‖Px − p‖ < ε}.

Corollary 1.2. For all ε > 0, p⊗n(T
(n)
ε (p))

n→∞−−−→ 1.

1.3 Asymptotic equipartition and Shannon entropy

Let α1, α2, . . . be iid X -valued random variables with common distribution p. We call X
the source.

Theorem 1.2 (asymptotic equipartition property, Shannon). As n → ∞ the random
sequence (α1, α2, . . . ) ∈ XN a.s. satisfies

p⊗n((α1, . . . , αn)) = e−H(p)+o(n)

as n→∞, where

H(p) = −
∑
x∈X

p(x) log(p(x)).

Proof. By the law of large numbers,

1

n
log(p⊗n((α1, . . . , αn))) =

1

n

n∑
i=1

log(p(αi))

LLN−−−→ E[log(p(α1))]

=
∑
x∈X

p(x) log(p(x))

= −H(p).

Definition 1.4. The entropy ε-typical set from p is

A(n)
ε (p) = {x ∈ X n : e−(H(p)+ε)n < p⊗n(x) < e−(H(p)−ε)n.

Corollary 1.3. For all ε > 0,

p⊗n(A(n)
ε (p))

n→∞−−−→ 1.

Definition 1.5. The quantity H(p) is called the Shannon entropy of p.
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If α is a random variable with distribution p, we write H(α) := H(p).

Definition 1.6. Let p ∈ P (X ), and let a ∈ (0, 1). The a-covering number of p is

cova(p) := min{|F | : F ⊆ X , p(F ) > a}.

Here is a corollary of the AEP:

Corollary 1.4. For all a ∈ (0, 1),

cova(p
⊗n) = eH(p)n+o(n).

Proof. Homework.

The idea of the proof is to first pretend that p⊗n is uniform and then to see that the
errors are not exponentially big.
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