Math 254B Lecture 2 Notes

Daniel Raban

April 3, 2019

1 Marginals, Laws of Large Numbers, and The Asymptotic Equipartition Property

1.1 Marginal distributions and coupling

Denote $M(X, \mathcal{B})$ as the space of finite signed measures on (X, \mathcal{B}) and $P(X, \mathcal{B})$ as the subcollection of probability measures. We may also drop \mathcal{B} in the notation, assuming it to be the Borel σ -algebra.

Definition 1.1. If $\lambda = \varphi_* \mathbb{P} \in P(\prod_i X_i, \bigotimes_i \mathcal{B}_i)$ is a joint distribution, then the distributions $\mu_i = \pi_{i*}\lambda$ are called the **marginals** of μ_i . λ is called a **coupling** of $(\mu_i)_i$.

Proposition 1.1. $(\varphi_i)_i$ are independent if and only if $\varphi_*\mathbb{P} = \bigotimes_{i \in I} \varphi_{i*}\mathbb{P}$.

Remark 1.1. Product measures can be defined as usual, provided $\mu_i(X_i) = 1$ for all *i*.

Proposition 1.2. If f_1, \ldots, f_m are independent, \mathbb{R} -valued random variablea with $f_i \in L^1(\mathbb{P})$ for all *i*, then $\mathbb{E}[f_1, \ldots, f_m] = \prod_{i=1}^m \mathbb{E}[f_i]$.

Proof. Let μ_i be the distribution of f_i . By independence, the joint distribution of the f_i is $\mu_1 \otimes \cdots \otimes \mu_m$. Using this joint distribution, the left hand side is

$$\int_{\mathbb{R}^m} x_1 \cdots x_m \, d(\mu_1 \otimes \cdots \otimes \mu_m),$$

and the right hand side is

$$\int_{\mathbb{R}} x_1 \, d\mu_1 \cdots \int_{\mathbb{R}} x_m \, d\mu_m$$

Tonelli's theorem tells you that the left hand side with absolute values is integrable, so then Fubini's theorem tells you that the right hand side equals the left. \Box

1.2 Laws of large numbers

Theorem 1.1. If f_1, f_2, \ldots are \mathbb{R} -valued, iid random variables with all $f_i \in L^1(\mathbb{P})$, then

$$\frac{1}{n}\sum_{i=1}^{n}f_i \to E[f_i].$$

in $\|\cdot\|_1$ and a.e.

We will not prove this yet. But instead, for now, let's prove the special case of convergence in $\|\cdot\|_2$ when each $f_i \in L^2(\mathbb{P})$.

Proof. First, write

$$\frac{1}{n}\sum_{i=1}^{n}f_{i} - \mathbb{E}[f_{1}] = \frac{1}{n}\sum_{i=1}^{n}(f_{i} - \mathbb{E}[f_{i}]).$$

So we can assume that $\mathbb{E}[f_i] = 0$. Now

$$\left\|\frac{1}{n}\sum_{i=1}^{n}f_{i}\right\|_{2}^{2} = \frac{1}{n^{2}}\sum_{i=1}^{n}\|f_{i}\|_{2}^{2} + \frac{1}{n^{2}}\sum_{i\neq j}\mathbb{E}[f_{i}f_{j}]$$

But if $i \neq j$, then $\mathbb{E}[f_i f_j] = \mathbb{E}[f_i] \mathbb{E}[f_j] = 0$.

$$= \frac{1}{n^2} \sum_{i=1}^n \|f_i\|_2^2$$

= $O(1/n).$

Remark 1.2. You can prove the full theorem from this special case by using the fact that L^2 is dense in L^1 (since simple functions are dense in all L^p).

Let $|\mathcal{X}| < \infty$ be a finite alphabet. Let $n \in \mathbb{N}$, $x \in \mathcal{X}^n$, and $a \in \mathcal{X}$.

Definition 1.2. Let $N(a | x) = |\{i = 1, ..., n : x_i = a\}|$. For a fixed x,

$$\mathbb{P}_x(a) := \frac{N(a \mid x)}{n} \in P(\mathcal{X})$$

is called the **empirical distribution** of x.

Corollary 1.1. Let $\alpha_1, \alpha_2, \ldots$ be iid random variables taking values in \mathcal{X} with common distribution \mathbb{P} . Then $\mathbb{P}_{(\alpha_1,\ldots,\alpha_n)} \to \mathbb{P}$ in probability and a.s.

Proof. For all $a \in \mathcal{X}$,

$$\mathbb{P}_{(\alpha_1,\dots,\alpha_n)}(a) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{a\}}(\alpha_i) \xrightarrow{\text{LLN}} \mathbb{E}[\mathbb{1}_{\{a\}}(\alpha_1)] = \mathbb{P}(a).$$

Definition 1.3. Let $p \in P(\mathcal{X})$. The ε -typical set for p is

$$T_{\varepsilon}^{(n)}(p) = \{ x \in \mathcal{X}^n : \|\mathbb{P}_x - p\| < \varepsilon \}.$$

Corollary 1.2. For all $\varepsilon > 0$, $p^{\otimes n}(T_{\varepsilon}^{(n)}(p)) \xrightarrow{n \to \infty} 1$.

1.3 Asymptotic equipartition and Shannon entropy

Let $\alpha_1, \alpha_2, \ldots$ be iid \mathcal{X} -valued random variables with common distribution p. We call \mathcal{X} the **source**.

Theorem 1.2 (asymptotic equipartition property, Shannon). As $n \to \infty$ the random sequence $(\alpha_1, \alpha_2, \dots) \in \mathcal{X}^{\mathbb{N}}$ a.s. satisfies

$$p^{\otimes n}((\alpha_1,\ldots,\alpha_n)) = e^{-H(p) + o(n)}$$

as $n \to \infty$, where

$$H(p) = -\sum_{x \in \mathcal{X}} p(x) \log(p(x)).$$

Proof. By the law of large numbers,

$$\frac{1}{n}\log(p^{\otimes n}((\alpha_1,\ldots,\alpha_n))) = \frac{1}{n}\sum_{i=1}^n\log(p(\alpha_i))$$
$$\xrightarrow{\text{LLN}} \mathbb{E}[\log(p(\alpha_1))]$$
$$= \sum_{x\in\mathcal{X}}p(x)\log(p(x))$$
$$= -H(p).$$

Definition 1.4. The entropy ε -typical set from p is

$$A_{\varepsilon}^{(n)}(p) = \{ x \in \mathcal{X}^n : e^{-(H(p) + \varepsilon)n} < p^{\otimes n}(x) < e^{-(H(p) - \varepsilon)n} \}$$

Corollary 1.3. For all $\varepsilon > 0$,

$$p^{\otimes n}(A_{\varepsilon}^{(n)}(p)) \xrightarrow{n \to \infty} 1.$$

Definition 1.5. The quantity H(p) is called the **Shannon entropy** of p.

If α is a random variable with distribution p, we write $H(\alpha) := H(p)$.

Definition 1.6. Let $p \in P(\mathcal{X})$, and let $a \in (0, 1)$. The *a*-covering number of p is

$$\operatorname{cov}_a(p) := \min\{|F| : F \subseteq \mathcal{X}, p(F) > a\}.$$

Here is a corollary of the AEP:

Corollary 1.4. For all $a \in (0, 1)$,

$$\operatorname{cov}_a(p^{\otimes n}) = e^{H(p)n + o(n)}.$$

Proof. Homework.

The idea of the proof is to first pretend that $p^{\otimes n}$ is uniform and then to see that the errors are not exponentially big.